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SUMMARY

Deep convection occurs in the outer one-third of the solar interior and transports energy generated
by nuclear reactions to the surface. It leads to a characteristic pattern of time-averaged di�erential
rotation, with the poles rotating signi�cantly slower (approximately 25 per cent) than the equator.
This di�erential rotation results from Reynolds stresses that are associated with correlations of the
longitudinal velocity with the radial and latitudinal velocities. One particularly interesting feature of the
solar di�erential rotation is that it shows signi�cant tilting of angular velocity contours away from the
rotation axis (i.e. breaking of the Taylor–Proudman state of rotation rate constant on cylinders aligned
with the rotation axis), in contrast to the results from early numerical simulations. In spite of such
discrepancies, numerical simulations provide the best chance of making progress in understanding the
observations. Many studies have adopted the DNS approach and have justi�ed the arti�cially large
viscosities and thermal di�usivities used as modelling transport by unresolved eddies. LES techniques
(which use a turbulence closure to relate transport coe�cients to local properties of the �ow) o�er a
superior alternative, but face the problem of de�ning the turbulence closure, which is potentially di�cult
in the presence of strati�cation, rotation and other complicating factors. This problem can be avoided
by shifting the responsibility for truncating the turbulent cascade from an explicit turbulence closure to
the numerical scheme itself. Since this approach abandons the rigorous notions of the LES approach, we
refer to it as a VLES (Very Large Eddy Simulation). This paper compares results of DNS simulations
carried out with a spherical-harmonic code, and preliminary results obtained using a VLES-type code.
Both make the anelastic approximation. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the outer one-third of the solar interior, radiative transport becomes ine�cient at transporting
energy outwards (due to the increasing opacity) and convection takes over as the primary
mechanism of energy transport; this region of the sun is known as the convection zone. The
convection is driven primarily by strong radiative cooling near the surface, with compensating
warming occurring over a broad region in radius near the base of the convection zone. The
time scale of the convection is about 30 earth days, with characteristic velocities of a few
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hundred metres per second and characteristic temperature �uctuations of a few Kelvin. Since
the convective time scale is very similar to the rotation time scale (giving a Rossby number
of order 1), the convection is signi�cantly in�uenced by rotation, leading to the observed
di�erential rotation with the poles rotating substantially slower than the equator (see Plate 1).
In addition, because the density in the convection zone varies by over 10 orders of magnitude,
the convection is strongly in�uenced by strati�cation e�ects. Since solar plasma is a very
good electrical conductor (leading to small magnetic di�usivities and high magnetic Reynolds
numbers), magnetic �elds are yet another factor which in�uences the dynamics of the solar
interior; the interaction of �uid �ow and magnetic �elds leads to the 22 year cycle of magnetic
�elds and sunspot activity, although the exact mechanism is as yet unclear.
The combined e�ect of compressibility, rotation and magnetic �elds in a high Reynolds

number (and therefore highly turbulent) �ow leads to system with a rich spectrum of be-
haviour that we can only hope to understand through detailed numerical simulations. Such
numerical simulations, which are computationally intensive, have only become possible in the
last few decades with the advent of high performance computing. In spite of the advances in
computer performance, the large number of degrees of freedom necessitates adopting certain
approximations in carrying out simulations of solar convection—the most important of these
is to adopt the anelastic approximation (see Reference [2]). This �lters out fast sound waves
that would otherwise unreasonably limit the computational time step, and which probably play
a small part in the overall dynamics of the convection zone. Both simulations described in
this paper make this approximation. Another fundamental simpli�cation is to neglect magnetic
�elds; this is probably a reasonably good approximation if magnetic �elds in the convection
zone are not too strong. A �nal simpli�cation made in the simulations described in this paper
is to limit the range of densities modelled, e�ectively cutting the simulation o� near the solar
surface where the density scale height becomes small; this removes the need to use multiple
grids to model the di�erent scales of convection and simpli�es the problem.
A question that is paramount in modelling solar convection is which numerical integra-

tion scheme to adopt. Interestingly, the thermodynamic properties of convection provide some
insight in answering this question. Radiative heating near the base and cooling near the sur-
face act as a source of negative entropy, which in equilibrium must be compensated for by
the action of irreversible processes. Two irreversible processes contribute—�rstly, the transfer
of heat from one �uid element to another by radiative di�usion, and secondly, the dissi-
pation of kinetic energy by the action of viscosity. The relative roles of the two are un-
clear, although since the Prandtl number is low (the radiative di�usivity being much higher
than the kinematic viscosity) the �rst is probably dominant. Unfortunately, since the radia-
tive di�usivity and kinematic viscosity are both so small in the solar convection zone, the
scales at which they operate are far too small to be resolved computationally. For this rea-
son, irreversible entropy production must be accounted for by arti�cial dissipation, either in
the form of enhanced values of the radiative di�usivity and viscosity, or a dissipative nu-
merical scheme. Simulations that employ non-dissipative advection schemes, which include
pseudo-spectral and CTS (Centred in Time and Space) methods, thus have no chance of
producing stable solutions unless explicit thermal di�usion and viscosity are added. Such
methods were used in the many early simulations of solar convection, the necessary di�usion
and viscosity being justi�ed as in some way modelling the e�ect of small eddies on the
large-scale �ow (e.g. References [3; 4]). Since the di�usion and viscosity took the form of
Laplacians with constant coe�cients, these studies may be classi�ed as DNS simulations. The
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Plate 1. Solar angular velocity in a meridional cut as determined by helioseismic inversion
of GONG (Global Oscillations Network Group) data [1]. Note that polar rotation rate

estimates are extrapolated from lower latitudes.

Plate 2. The vertical velocity on three horizontal surfaces (near the top, near the
middle, and near the bottom) in a DNS simulation of solar convection. Red and white

denote up�ows, while blue denotes down�ows.
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Plate 3. The time-averaged angular velocity from the same simulation as shown in
Plate 2. The scale on the right is in nHz.

Plate 4. The time-averaged angular velocity in two simulations carried out using
the NFT code. The one on the left is a DNS simulation for comparison with

Plate 3, while the one on the right is a genuine VLES simulation.
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Plate 5. The vertical velocity on a horizontal surface near the middle of the domain
for the VLES simulation. The scale on the right is in ms−1.

Plate 6. Longitudinally averaged potential temperature departures from the
spherical mean in the VLES simulation.
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next section summarizes some of the results from References [5] and [6], which fall into this
category.
The problem with DNS techniques is that large thermal di�usivities and viscosities are

introduced everywhere, even when the �ow is laminar. A better approach is to adopt the
LES technique, where the �ow �eld is decomposed into resolved and unresolved scales, and
�ltered equations are obtained which include the divergence of the SGS (Sub-Grid Scale)
stress tensor. In general, the components of this stress tensor are uncomputable and must be
expressed in terms of the resolved components of the �ow variables—this is known as an
SGS model. The most commonly used SGS model is that postulated by Smagorinsky [7], in
which the SGS stress tensor is proportional to the local rate of strain of the resolved �ow.
Historically, SGS models have tended to be judged not so much on being sound repre-

sentations of what is actually happening on the sub-grid scale as on e�ectively suppressing
false computational oscillations. Once one gives up the notion that SGS models accurately
represent the behaviour of unresolved eddies, there are simpler, more e�ective, means of
achieving the suppression of false computational oscillations. In particular, there is a class
of �nite di�erence methods—non-oscillatory forward in time (NFT)—that have exhibited the
remarkable property of representing LES=VLES without recourse to any explicit SGS model.
Such methods are inherently dissipative and provide an irreversible entropy source, as they
must do given the constraints mentioned above. They have demonstrated their utility in sim-
ulations of the Earth’s planetary boundary layer (PBL) [8], comparing well with equivalent
LES runs. This paper presents �rst results obtained for solar convection using a code based
on NFT methods, in particular the MPDATA (Multidimensional Positive-De�nite Advection
and Transport Algorithm) scheme [9].
Comparisons have previously been made between di�erent numerical techniques for simu-

lating solar convection [10]. In this work three-dimensional Cartesian convection was studied
with both a pseudo-spectral code and a code that implemented the PPM algorithm (Piecewise
Parabolic Method, see Reference [11]); the latter is another method from the NFT class, which
can be run stably with no explicit di�usion or viscosity. Detailed comparisons of results were
not presented in this study, but a description of the philosophy of NFT methods was included.
It seems a great deal of avoidable confusion has been introduced into the subject by the use
of the word inviscid to describe simulations using NFT methods.
This paper is divided into three sections after this introduction. The next section de-

scribes results from a pseudo-spectral DNS model, using constant di�usivities and viscosities.
Section 3 describes results from a VLES simulation of solar convection, while Section 4 high-
lights the conclusions from this work. Finally, an appendix describes the equation set used in
both the models described in this paper.

2. DNS RESULTS

This section describes numerical simulations carried out within the DNS framework, using
a code (see References [5; 6; 12]) that expands the prognostic variables (entropy, pressure,
and velocity) in spherical harmonics in the horizontal, and in Chebyshev polynomials in the
vertical. Spherical harmonic expansions have been used widely in meteorological applications,
and have the advantage of providing uniform resolution over the sphere (at least when trian-
gular truncation is used)—this avoids computational artifacts near the poles. Non-linear terms
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Figure 1. The divergence of the radiative �ux (dotted line: actual, dashed line: that assumed in the
model) and the variation of density with height (solid line), as functions of the fractional height z.

are calculated in physical space, using a grid with su�cient resolution to avoid quadratic
aliasing. Apart from the uniform resolution, spherical harmonic basis functions also o�er the
advantage of yielding a very easy solution of the elliptic pressure equation, since the linear
terms decouple.
The computational domain used for the simulations is a spherical shell with an inner radius

of 5×105 km and an outer radius of 6:9×105 km. The density contrast from the bottom of the
domain to the top is about 30, which, although substantially less than the actual contrast across
the convection zone, allows for signi�cant strati�cation e�ects to be felt. Thermal forcing is
modelled by assuming that the mean strati�cation in the bulk of the convection zone is
always nearly adiabatic, allowing the divergence of the radiative �ux to be calculated fairly
accurately (assuming a knowledge of the radiative opacity)—Figure 1 shows the divergence
of the radiative �ux as used in the simulations described here (for the exact formula used, see
the appendix), along with the density (which is simply an adiabatic strati�cation). Near the
surface the assumption of a near-adiabatic strati�cation breaks down, and there is an extremely
narrow region of strong radiative cooling—this is arti�cially broadened (by making the scale
of the region comparable to the local density scale height) to enable it to be resolved on the
computational grid used.
Consistent with the DNS framework, the Navier–Stokes equations are solved with entropy

di�usion and viscous terms having coe�cients that depend only on radius. Tests have been
carried out with several di�erent dependencies of these coe�cients on radius—the e�ects on
the results are not too substantial. Su�ciently large values of entropy di�usion and viscosity
are required to produce stable, well-behaved solutions; typical values used lead to Reynolds
numbers in the region of ∼ 50. In a linear analysis, the most unstable modes of the system
are convective rolls aligned with the rotation axis. These are also seen in the non-linear
solutions, albeit with considerable distortion from non-linear e�ects. Plate 2 shows a typical
view of the vertical velocity on three levels in a solution from the DNS code. The convective
rolls, or ‘banana cells’, can clearly be seen in the left and middle panels of this �gure
(which correspond to levels near the surface, and near the centre of the convection zone,
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respectively), with rotationally aligned lanes of down�owing material aligned interspersed by
up�owing material.
This simulation was carried out with spherical harmonics up to degree 85, and with 64

radial grid points. The Reynolds number for the largest eddies in this simulation was about
30. Simulations can be carried out with higher resolutions, enabling higher Reynolds numbers
to be attained; however, the computational e�ort required to increase the resolution is very
high, since the number of �oating point operations scales with the �fth power of resolution
(since the spherical harmonic transforms scale with the cube of the horizontal resolution, and
the number of time steps also scales linearly with the resolution).
Turning now to other aspects of the results, the time-averaged di�erential rotation in the

same simulation is shown in Plate 3. Comparing with Plate 1, which shows the solar dif-
ferential rotation (as deduced from helioseismology), some similarities are clear. Firstly, the
simulation gives a fast equator and slow poles, which is correct. Secondly, the contrast in an-
gular velocity between the poles and equator is similar to that seen in the sun. Unfortunately,
there are signi�cant di�erences in other respects. Firstly, most of the angular velocity contrast
in the simulation is seen near the equator, whereas Plate 1 shows that in the sun there is
a continuous change in angular velocity from the equator to the poles. Also, Plate 1 shows
signi�cant tilting of lines of constant angular velocity relative to the rotation axis, whereas
the simulation shows very little. Other simulations (see References [3] and [4]) have also
shown little such tilting, with angular velocity contours nearly parallel to the rotation axis.
The reasons for these discrepancies are currently unclear, although what does seem to be the
case is that Reynolds stresses alone (in this case correlations of the radial and latitudinal
velocity components) are not strong enough, and are typically of the wrong sign, to produce
the observed tilting—buoyancy forces almost certainly play a part, implying that the poles are
warm with respect to the equator.
The �nal aspect of the DNS results that we consider here is the mean meridional circulation.

This circulation is driven by Reynolds stresses corresponding to correlations of the latitudinal
and radial velocities and is important for dynamo wave propagation, especially near the base
of the convection zone. The results (not shown) document pole-ward �ows near the surface
in both hemispheres (in agreement with results from helioseismology [13]) with equator-
ward return �ows deeper down. The magnitude of both of these �ows is of the order of
10 ms−1.

3. LES RESULTS

The simulations described so far rely on comparatively large, �xed, values of viscosity and
thermal di�usivity in order to obtain a stable solution. A better option is to use thermal
di�usion and viscosities having coe�cients that depend on local properties of the �ow, such
as the local rate of strain (which would be an LES approach). This avoids the use of a large
amount of dissipation where it is unnecessary, the only drawback being the di�culty in �nding
general forms for these coe�cients (especially in the presence of rotation and strati�cation).
Another way of achieving the same objective, without this drawback, is to make the numerical
advection scheme itself inherently stable. Such advection schemes belong to the general class
of NFT methods for which ensuring linear stability (in particular by respecting the familiar
Courant number condition) also assures nonlinear stability, at the expense of adding dissipation
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in certain parts of the �ow. We refer to numerical simulations of �uid �ow employing such
advection schemes as VLES, to distinguish them from LES simulations.
This section describes numerical simulations of solar convection carried out using a code

described in Reference [14], and employing the VLES philosophy. It is an anelastic, grid-based
code, with options for carrying out advection either by means of a semi-Lagrangian scheme
or an Eulerian scheme (MPDATA, see Reference [9]). Because NFT methods are inherently
two time-level, accurate time integration necessitates the solution of a large non-symmetric
linear system that represents a complex non self-adjoint 3D elliptic PDE for pressure. For
deep �uids, such as the sun’s convection zone, such a problem can be solved using standard
Krylov subspace methods (although note that in the case of the Earth’s atmosphere, the
resulting elliptic equations are extremely sti�, and preconditioning is necessary)—this is the
approach adopted in this code.
Coordinate singularities, such as that present at the poles in the spherical polar coordinate

system, represent a potential di�culty for grid-based methods. This is generally not particularly
signi�cant when simulating the Earth’s atmosphere, since there is not much convective activity
near the poles, but could present a problem in the solar case, since convection occurs at all
latitudes with nearly equal strength.
Several simulations have been carried out using the code described in this section. Plate 4

shows the di�erential rotation obtained in two such simulations, of which the one on the left
is a DNS-like simulation for comparison with the results of Section 2, while the one on the
right is a genuine VLES simulation, with no added thermal di�usion or viscosity. The DNS-
like simulation shown in the left-hand panel was carried out using similar values of viscosity
and thermal di�usivity as those used in the simulation that yielded Plate 3. Comparing the
two plots, it can be seen that the overall contrast in angular velocity between the equator and
poles is similar, amounting to about 15 per cent of the equatorial value. This is somewhat
less than the corresponding contrast seen in the sun (approximately 25 per cent). Looking
beyond this simple measure, the new simulation is more ‘solar-like’ in two principal ways—
�rst, quite a bit of the angular velocity contrast occurs near the poles, as opposed to having
an almost constant angular velocity at latitudes above 30 degrees. Secondly, the contours
of constant angular velocity are considerably tilted with respect the rotation axis, showing
signi�cant departure from the Taylor-Proudman regime.
The right-hand panel of Plate 4 shows the time-averaged angular velocity from the genuine

VLES simulation, carried out using the Eulerian advection scheme. The angular velocity is
seen to peak at the equator and at mid-latitudes, with weak minima at around 40 degrees
latitude and strong minima near the poles. The overall contrast in angular velocity between
the equator and poles is very large, larger indeed than in both the DNS simulation described
in Section 2, and in the real sun. The contours of constant angular velocity are very nearly
parallel to the rotation axis in this case, showing little breaking of the Taylor–Proudman state.
This simulation clearly shows less similarity with the sun in di�erential rotation than either
of the DNS simulations described—why should this be the case?
At this point it is worth considering a few of the possible reasons why the VLES simulation

should give a less realistic di�erential rotation pro�le than either of the DNS simulations. The
limitations of the VLES simulation can be broadly grouped into two categories—problems
with the physics used, and insu�cient resolution to capture the smallest eddies in the �ow.
Problems with the physics include insu�cient density contrast between the bottom and top of
the domain, inaccurate boundary conditions, and the absence of magnetic �elds. Insu�cient
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resolution refers to the inability to model the smallest eddies in the �ow as simulated, and
would be manifested as a lack of good convergence with increasing numerical resolution. The
DNS simulations share the same limitations, but su�er from the additional limitation of having
excessive dissipation acting where it is not strictly necessary. It thus seems that although the
DNS simulations are obtaining a better result, it is probably for the wrong reasons.
Turning now to other aspects of the solutions obtained with the NFT code,

Plate 5 shows the vertical velocity from the VLES simulation on a horizontal surface at
approximately the midpoint of the shell in radius. Close similarities can be seen with the
vertical velocity from the spherical-harmonic code DNS simulation (shown in Plate 2), with
elongated ‘banana cells’ near the equator, and less rotationally in�uenced convection near the
poles. The maximum velocity of the down�ows is somewhat higher than that of the up�ows,
while the absolute magnitudes are of the order of 100–150ms−1. The simulation shows some
evidence of coordinate problems near the poles, with the typical scale of convective features
diminishing in those regions—the danger of this occurring was noted in the introduction to
this section.
Plate 6 shows the longitudinally averaged departures of the potential temperature from the

spherical mean value in the VLES simulation. This plot shows how small the departures
are, and how close the convection zone is to being spherically symmetric—the �uctuation in
temperature is of the order of one part in a million. E�orts to measure the variation of the
solar surface temperature and luminosity with latitude are thus faced with a very challenging
problem. The small variation of temperature with latitude that this plot does show is such as to
produce a thermal wind circulation that tends to tilt the lines of constant angular velocity away
from the rotation axis; importantly, since the poles are warm with respect to the equator, this
tilting is in the right direction (see the comment in the penultimate paragraph of Section 2).
Note that little evidence of such tilting is actually seen in the angular velocity plots of Plate 4,
presumably because the magnitude of the pole-equator temperature di�erence is not su�ciently
large.
The mean meridional circulation generated in the VLES run (not shown) is found to be

very similar to that obtained in the DNS case (see the last paragraph of Section 2) with a
characteristic pole-ward �ow near the surface and an equator-ward return �ow deeper down.
The magnitudes of these �ows are again of the order of 10 ms−1.

4. CONCLUSION

This paper has outlined the challenge of understanding the complex dynamics of the solar
convection zone, and has highlighted some results from two investigations using large-scale
numerical simulations. Many previous investigations of solar convection have adopted the DNS
approach, and have been faced with the problem of having to introduce large arti�cial thermal
di�usivities and viscosities. The �rst investigation presented here is of this type, and employs
spherical harmonics to expand the prognostic variables. The second investigation presented is
of a very di�erent type, employing NFT advection techniques to create an implicitly stable
numerical scheme that avoids the use of large amounts of arti�cial thermal di�usivity and
viscosity. Simulations carried out under this philosophy are known as VLES—these results
are presented along with results obtained using the same code but adding arti�cial viscosity
and di�usion; this enables comparison with the already-presented DNS results.
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All three sets of results (the DNS with spherical harmonic code, the DNS with the NFT
code, and the VLES with the NFT code) show similar patterns of vertical velocity in the
convection zone, with ‘banana-cell’ convective rolls and convection velocities of the order of
a few hundred meters per second. The DNS and the VLES solutions also show very similar
patterns of mean meridional circulation, an aspect of the �ow that is important for dynamo
wave propagation. The three di�er, however, when we come to compare the di�erential rota-
tion produced—the DNS with the spherical harmonic code gives a somewhat similar pattern
to the DNS with the NFT code, but the VLES with the NFT code is rather di�erent. Since
the �rst two are carried out with almost identical equation sets and parameter values, one
would expect them to give similar results—the fact that there are di�erences at all indicates
the sensitivity of the solutions to the details of the viscous stresses. On the other hand, the
VLES simulation giving such di�erent results is interesting and illustrates particularly well
the strong e�ect of the arti�cial viscosity and di�usivity used in DNS simulations. Aside
from the di�erences between the three simulations presented, each captures some elements of
the observed results that the others do not, so no one could clearly be quali�ed as the most
accurate—comparing the three provides some hints as to the sensitivities of solar convection.
Future work in these investigations will concentrate on better understanding the origin and

consequences of the discrepancies between the DNS simulation carried out with the spherical-
harmonic code (as described in Section 2), and that carried out with the NFT code (as
described in Section 3). In addition, further studies will be carried out to investigate the
degree of convergence of the VLES results—were the results from this simulation to change
signi�cantly with resolution, it would indicate a poor degree of numerical convergence. If,
even in the converged case, the results fail to show good agreement with the observationally
determined solar di�erential rotation, the suggestion would be that some other aspect of the
physics of the problem has been incorrectly modeled, whether it is the lack of magnetic �elds,
insu�cient density contrast across the domain, or other factors. There is clearly much scope
for further investigation of this fascinating problem.

APPENDIX

This appendix describes the equation sets solved in the two models. We �rst describe the
equations solved in the spherical harmonic code—in this case the prognostic variables are
velocity and entropy (in contrast with velocity and potential temperature in the case of the
NFT model of Smolarkiewicz). The continuity equation in the anelastic approximation (which
applies to both models) is:

∇ · (�0v)=0 (1)

where �0 is the reference-state density and v is the �uid velocity. The momentum equation is

@v
@t
+ (v · ∇)v= − 1

�0
∇p′ +

�′

�0
g+ 2v∧�− 1

�0
∇ ·D (2)

where p′ and �′ are the departures of the pressure and density from the reference state values,
g is the acceleration due to gravity, � is the rotation vector, and D is the viscous stress tensor,
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given by:

Dij=−2�0�
[
eij − 1

3
(∇ · v)�ij

]

The entropy equation is given by

�0T0
@S ′

@t
+ �0T0(v · ∇)S ′= �+∇ · (��0T0∇S ′) + 2��0

[
eijeij − 1

3
(∇ · v)2

]
(3)

where S ′ is the �uctuation of entropy away from the reference state value, � is the thermal
di�usivity, and � is the divergence of the radiative �ux. The last term on the right hand side
of this equation is the viscous heating term. In all the simulations described in this paper, the
following form is used for �:

�= �
(
�1e−�1z

1− e−�1 −
�2e−�2(1−z)

1− e−�2
)

(4)

where � is an appropriate constant of proportionality, z is the non-dimensional height within
the domain, and �1 and �2 are non-dimensional constants, which take the values 5.5 and 13.0
respectively.
Finally, an equation of state is required to link �uctuations of the entropy to �uctuations

of the pressure and density. This is given by the following equation:

S ′=
3
2
kT (p′=p0 − �−1�′=�0) (5)

where � is the adiabatic exponent, and k is the Boltzmann constant.
We now proceed to describe the equation set used in the NFT model of Smolarkiewicz.

Potential temperature is used instead of entropy, leading to the following momentum and
potential temperature equations:

@v
@t
+ (v · ∇)v=−∇

(
p′

�0

)
+ g

	′

	0
+ 2v∧�− 1

�0
∇ · (��0∇v) (6)

@	′

@t
+ (v · ∇)	′ = 	0

�0KT0
�− 1

�0
∇ · (��0∇	′) + 2��0

[
eijeij − 1

3
(∇ · v)2

]
(7)

where 	′ is the �uctuation of potential temperature away from the reference state, and K
is the thermal capacity of the �uid. Note the somewhat di�erent form of the viscous stress
in the momentum equation. This term is calculated by means of scalar Laplacians on each
component, rather than taking the full vector Laplacian—this means that certain parts of the
stress (in particular those arriving from the curvature of the coordinate system) are neglected.
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